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Abstract

Multilayer transformer networks consist of in-
terleaved self-attention and feedforward sub-
layers. Could ordering the sublayers in a dif-
ferent pattern lead to better performance? We
generate randomly ordered transformers and
train them with the language modeling objec-
tive. We observe that some of these models
are able to achieve better performance than the
interleaved baseline, and that those successful
variants tend to have more self-attention at the
bottom and more feedforward sublayers at the
top. We propose a new transformer pattern that
adheres to this property, the sandwich trans-
former, and show that it improves perplexity
on multiple word-level and character-level lan-
guage modeling benchmarks, at no cost in pa-
rameters, memory, or training time. However,
the sandwich reordering pattern does not guar-
antee performance gains across every task, as
we demonstrate on machine translation mod-
els. Instead, we suggest that further explo-
ration of task-specific sublayer reorderings is
needed in order to unlock additional gains.1

1 Introduction

The transformer layer (Vaswani et al., 2017) is cur-
rently the primary modeling component in natural
language processing, playing a lead role in recent
innovations such as BERT (Devlin et al., 2019) and
GPT-2 (Radford et al., 2019). Each transformer
layer consists of a self-attention sublayer (s) fol-
lowed by a feedforward sublayer (f), creating an in-
terleaving pattern of self-attention and feedforward
sublayers (sfsfsf · · · ) throughout a multilayer
transformer model. To the best of our knowledge,
there is no reason to expect this particular pattern
to be optimal. We conduct a series of explorations
to obtain insights about the nature of transformer
orderings that work well, and based on this, we

1Our code is available at https://github.com/
ofirpress/sandwich_transformer

sfsfsfsfsfsfsfsfsfsfsfsfsfsf

(a) Interleaved Transformer

sssssssfsfsfsfsfsfsfsfffffff

(b) Sandwich Transformer

Figure 1: A transformer model (a) is composed of inter-
leaved self-attention (green) and feedforward (purple)
sublayers. Our sandwich transformer (b), a reordering
of the transformer sublayers, performs better on lan-
guage modeling. Input flows from left to right.

design a new transformer ordering pattern that im-
proves upon the baseline.

First, we generate random transformer models,
varying the number of each type of sublayer, and
their ordering, while keeping the number of pa-
rameters constant. We train these models on the
standard WikiText-103 word-level language mod-
eling benchmark (Merity et al., 2016), and observe
that some of these random models outperform the
original interleaved transformer model, even when
the number of self-attention and feedforward layers
is not equal. Our analysis shows that models with
more self-attention toward the bottom and more
feedforward sublayers toward the top tend to per-
form better in general.

Based on this insight, we design a new family of
transformer models that follow a distinct sublayer
ordering pattern: sandwich transformers (Figure 1).
Our experiments demonstrate that a sandwich trans-
former outperforms the baseline of Baevski and
Auli (2019). This result is made more interesting
by the fact that our sandwich transformer is simply
a reordering of the sublayers in the baseline model,
and does not require more parameters, memory, or
training time.

Finally, we demonstrate that even though the

https://github.com/ofirpress/sandwich_transformer
https://github.com/ofirpress/sandwich_transformer


Model PPL

fsfsfffsffsfsssffsfssfssssffsffs 20.74
sfssffsffffssssfsfffsfsffsfssssf 20.64
fsffssffssssffsssssffsfssfsfffff 20.33
fsffffffsssfssffsfssffsfsssffsss 20.27
fssffffffsfsssfffssssfffssssffss 19.98
sssfssfsffffssfsfsfsssffsfsfffsf 19.92
fffsfsssfsffsfsffsffsssssffssffs 19.69
fffsffssffsssfssfsssfffffsfsssfs 19.54
sfsfsfsfsfsfsfsfsfsfsfsfsfsfsfsf 19.13
fsffssfssfffssssfffsssffffsfssfs 19.08
sfsffssssffssffffsssffsssfsffsff 18.90
sfsfsfsfsfsfsfsfsfsfsfsfsfsfsfsf 18.83
sssssssffsffsfsfsffffsfffsfssffs 18.83
sffsfsffsfsssffssfssssssfffffffs 18.77
sssfssffsfssfsffsfffssffsfsffssf 18.68
fffsssssfffsfssssffsfsfsfssffsff 18.64
sfffsssfsfssfsssssfssfffffsfffsf 18.61
ssffssfssssffffffssffsssfsffssff 18.60
fsfsssssfsfsfffffsfffsffssffssss 18.55
sfsfsfsfsfsfsfsfsfsfsfsfsfsfsfsf 18.54
sfsfsfsfsfsfsfsfsfsfsfsfsfsfsfsf 18.49
fsfsssssfsfffssfsffsfsfsfsffffss 18.38
sfssffsfsfsffsssssfffsssfffsffsf 18.28
sfsfsfsfsfsfsfsfsfsfsfsfsfsfsfsf 18.25
sfsfssfsssffsfsfsfsffffssffsfssf 18.19

Table 1: Randomly generated models with 16 self-
attention (s) sublayers and 16 feedforward (f) sub-
layers, and their perplexity on the WikiText-103 devel-
opment set. The baselines (the standard transformer
trained with different random seeds) are in bold.

sandwich transformer is motivated by random
search experiments on WikiText-103, it can im-
prove performance on additional domains and tasks.
Sandwich transformers achieve state-of-the-art re-
sults on the enwik8 character-level language model-
ing dataset and on an additional word-level corpus,
but have no significant effect on machine transla-
tion. We conjecture that tuning transformer reorder-
ings to specific tasks could yield even larger gains,
and that further exploration of the ordering space
may provide universally beneficial patterns.

2 Notation

Each transformer layer consists of a self-attention
sublayer followed by a feedforward sublayer, mod-
ifying a sequence of vectors X0 as follows:2

X1 = self-attention(X0) +X0

X2 = feedforward(X1) +X1

Stacking multiple transformer layers creates an in-
terleaved network of sublayers. We denote these

2We omit dropout (Srivastava et al., 2014) and layer nor-
malization (Ba et al., 2016) to simplify the notation.
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Figure 2: The perplexities on the WikiText-103 devel-
opment set of 20 randomly generated models with 16
self-attention and 16 feedforward sublayers and of the
5 baselines (the standard transformer trained with dif-
ferent random seeds).

models as strings, with s and f representing self-
attention and feedforward sublayers, respectively.
A three-layer transformer network, for example,
would be denoted sfsfsf, with the flow of com-
putation moving from input on the left to output on
the right. Thus, any string in the regular language
(s|f)∗ defines a valid network that uses the same
building blocks as the original transformer. For
simplicity, we refer to these alternatives as trans-
formers as well.

3 Random Search

We conduct a series of experiments to under-
stand which transformer networks work well and
whether particular architectural patterns can im-
prove performance. First, we generate random
transformer models while keeping the number of
parameters constant. We then train these random
models to determine whether the interleaving pat-
tern (sfsfsf · · · ) is optimal (Section 3.1), and
whether balancing the number of self-attention and
feedforward sublayers is desirable (Section 3.2).
Finally, we analyze additional properties of these
random models, and find that those with more self-
attention at the beginning and more feedforward
sublayers near the end tend to outperform the stan-
dard interleaved model (Section 3.3).

Experimental Setup Our baseline is the strong
transformer language model of Baevski and Auli
(2019), trained on WikiText-103 (Merity et al.,
2016). WikiText-103 contains roughly 103 mil-
lion tokens from English Wikipedia, split into train,
development, and test sets by article. The Baevski



Model PPL

sfffssfsfsfssffffsfsffsffffff 22.80
sffssfsssssssssssssfsfsssfsffsssfsssfs 21.02
ssssssffsffffssfffffsssfsfsssssssss 20.98
fffffffffsffssffsffssssfsfsssf 20.75
fssfsssffffffssfsssfsfffssssfsfss 20.43
sffsffffffsfsfssfsssfsfsfssfssfs 20.28
sffssffsfffsfsfssssffffffssssff 20.02
fsffsfssffffsfsfffsfffssfffsss 19.93
sffsffssffsfsffsssfsssssfsssfffsss 19.85
ssfffffffssfffssfssffsfsfsffsf 19.82
sfsfsfffsfffssfsfffsffssfsfsfss 19.77
sfsffsssffsffsssfssfffffssssfsssf 19.55
sffsfssfffsffsfssssfsfsffffsfsss 19.49
sffffsffssssfsssfssfffsssfssssfsfs 19.47
fsssffssssssfsfsfsffsffffssfsfssss 19.25
sfsfsfsfsfsfsfsfsfsfsfsfsfsfsfsf 19.13
fssssssfsfsfsfffsfsssfssffssssfsff 18.86
sfsfsfsfsfsfsfsfsfsfsfsfsfsfsfsf 18.83
ssfsfsssfsssssffsfsfsssfssfsfsssssssf 18.62
sfsfsfsfsfsfsfsfsfsfsfsfsfsfsfsf 18.54
sfsfsfsfsfsfsfsfsfsfsfsfsfsfsfsf 18.49
sssfsffsfssfsssffsffffffssfsfff 18.34
sssfsfsffsssfsfffffsfsffffsssff 18.31
sfsfsfsfsfsfsfsfsfsfsfsfsfsfsfsf 18.25
ssssssfsssffffsfsfffffffffffsf 18.12

Table 2: Randomly generated models with the same
number of parameters as the baseline, and their perplex-
ity on the WikiText-103 development set. The base-
lines (the standard transformer trained with different
random seeds) are in bold.

and Auli model contains 16 transformer layers
of d = 1024 dimensions, with 16 heads in each
self-attention sublayer, and feedforward sublayers
with an inner dimension of 4096. In this setting,
each self-attention sublayer contains 4d2 param-
eters, while each feedforward sublayer contains
8d2 parameters (excluding bias terms, which have
a marginal contribution). Thus, each f sublayer
contains twice the parameters of a s sublayer, fol-
lowing the parameter ratio between self-attention
and feedforward sublayers described in Vaswani
et al. (2017).

All of our experiments use the same hyperparam-
eters as Baevski and Auli’s original model. To set
an accurate baseline, we train the baseline model
(the standard interleaved transformer) with five dif-
ferent random seeds, achieving 18.65 ± 0.24 per-
plexity on the development set.

3.1 Is Interleaving Optimal?

In the baseline 16-layer transformer model, 16 sub-
layers of each type are interleaved. Can we improve
model performance by simply rearranging them?
We thus generate 20 random transformer models
with 16 self-attention sublayers and 16 feedforward
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Figure 3: The perplexities on the WikiText-103 devel-
opment set of 20 randomly generated models with the
same number of parameters as the baseline, and of the
5 baselines (the standard transformer trained with dif-
ferent random seeds).

sublayers, randomly permuted, and train these mod-
els from scratch, without modifying any of the hy-
perparameters. Table 1 shows the entire sample,
while Figure 2 plots the perplexity distributions of
the shuffled transformers and the baseline side by
side.

We observe that 7 of the 20 randomly-permuted
models perform at least as well as the interleaved
baseline’s average performance, with the best
model achieving 18.19 perplexity. While the aver-
age performance of the baseline model beats the av-
erage performance of these random models, the fact
that a third of our random models outperformed
the average baseline suggests that a better ordering
than interleaving probably exists.

3.2 Are Balanced Architectures Better?

Is it necessary to have an identical number of sub-
layers of each type, or could models with more self-
attention (or more feedforward) sublayers yield bet-
ter results? To find out, we generate 20 unbalanced
transformer models by randomly selecting one sub-
layer at a time (either s or f with equal probability)
until the parameter budget is exhausted. Since a
feedforward sublayer contains double the parame-
ters of a self-attention sublayer, the networks’ depth
is not necessarily 32 sublayers as before and can
range from 24 (all f) to 48 (all s). Table 2 shows
the entire sample, while Figure 3 plots the perplex-
ity distributions of the randomly-generated trans-
formers and the baseline side by side.

We see that four of the generated unbalanced
models outperform the average baseline trans-
former. The best performing random model reaches
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Figure 4: Analysis of sublayer distribution in models that do better or worse than the average baseline, split across
bottom (a) and top (b) halves of the model.

a perplexity of 18.12 and has 12 self-attention and
18 feedforward sublayers. Both the average and
the median perplexities of this sample of unbal-
anced models are worse than those of the balanced
permuted models (Section 3.1). We do not ob-
serve any preference for more sublayers of one
type over the other; there are self-attention-heavy
and feedforward-heavy models in both the top five
and the bottom five of the results table. While of-
fering no guarantees – given the small sample sizes
and fixed hyperparameters – we conclude that a
balanced number of self-attention and feedforward
sublayers seems to be a desirable property, though
not a necessary one.

3.3 Attention First, Feedforward Later
So far, it is not clear which characteristics make
one transformer model more successful than an-
other; for example, measuring the number of times
each sublayer type appears in the network does
not reveal any strong correlation with performance.
However, analyzing the bottom (or top) half of the
network in isolation reveals an interesting property.

We first split the models to those that perform
better than the average baseline and those that do
not. We then slice each one of the previously-
generated random models in half by parameter
count (e.g., ssssff would be split to ssss and
ff, since every f contains twice as many param-
eters as an s), and count how many sublayers of
each type appear in each slice.

Figure 4 shows that models that outperform the
average baseline tend to have more self-attention s
in the first (bottom) half of the network and more
f in the second (top) half. While we do not have a
good hypothesis to explain this phenomenon, we

can exploit it to improve transformers (Section 4).

4 Designing a Better Transformer

Our analysis in the previous section motivates de-
signing a transformer model that is heavy on self-
attention at the bottom and feedforward sublay-
ers at the top, while at the same time containing
a more-or-less balanced amount of both sublayer
types. As a first attempt to manually design a better
transformer, we take this hypothesis to the extreme,
and train a transformer model of 16 self-attention
sublayers followed by 16 feedforward sublayers
(s16f16). This model achieves 18.82 perplexity,
which is comparable to the performance of the base-
line with the same number of parameters.

We next generalize this model and the original
interleaved transformer, creating the family of sand-
wich transformers. A sandwichnk transformer con-
sists of 2n sublayers in total (n of each type), con-
forming to the regular expression sk(sf)n−k fk.
The first k sublayers are purely self-attention (s),
while the last k are feedforward sublayers (f). In
between, we use the original interleaving pattern
(sf) to fill the remaining 2(n−k) sublayers. When
k = 0, we get the original transformer model, and
when k = n − 1 (its maximal value) we get the
previously mentioned snfn model. We refer to k
as the transformer’s sandwich coefficient.

We train sandwich transformers for n = 16
(to remain within the same parameter budget as
our baseline language model) and all values of
k ∈ {0, . . . , 15}. Figure 5 shows the transformer’s
performance as a function of the sandwich coef-
ficient k. With the exception of k = 14, 15, all
sandwich transformers achieve lower perplexities



Model Test

Baseline (Baevski and Auli, 2019) 18.70
Transformer XL (Dai et al., 2019) 18.30
kNN-LM (Khandelwal et al., 2019) 15.79

Baseline (5 Runs) 18.63 ± 0.26
Sandwich16

6 17.96

Table 3: Performance on the WikiText-103 test set. We
compare the best sandwich transformer to the unmod-
ified, interleaved transformer baseline (Baevski and
Auli, 2019) trained over 5 random seeds and to other
previously reported results.

than the average baseline transformer. Of those, 6
models outperform the best baseline transformer
(k = 5, 6, 8, 9, 10, 11). The best performance of
17.84 perplexity is obtained when k = 6. We com-
pare this model to the baseline on WikiText-103’s
test set.

Table 3 shows that, despite its simple design,
the sandwich transformer outperforms the original
transformer baseline by roughly double the gap be-
tween the baseline (Baevski and Auli, 2019) and
Transformer XL (Dai et al., 2019). This improve-
ment comes at no extra cost in parameters, data,
memory, or computation; we did not even change
any of the original hyperparameters, including the
number of training epochs.

To check whether this advantage is consistent,
we train 4 more sandwich166 models with different
random seeds (5 in total) and evaluate them on the
development set, to avoid evaluating our model
more than once on the test set. This is the only
experiment in which we modify our model’s ran-
dom seed. Figure 6 shows that we obtain a mean
perplexity value of 17.98 with a standard deviation
of 0.10, while the baseline achieves 18.65 mean
perplexity, with a larger standard deviation of 0.34
(these values reflect development set performance,
not test set performance as in Table 3).

In very recent work, kNN-LM (Khandelwal
et al., 2019) set a new state of the art on WikiText-
103, surpassing other recent models by a wide mar-
gin. The model achieves this result by storing the
entire training set in an auxiliary memory com-
ponent. Since this approach appears orthogonal to
ours, it is quite possible that kNN-LM could benefit
from sublayer reordering as well.

5 One Reordering to Rule Them All?

The sandwich transformer is a manually-crafted
pattern motivated by the performance of random
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Figure 5: The transformer’s sandwich coefficient (k)
and validation perplexity, for k ∈ {1, . . . , 15}. The
dotted line is the average baseline model’s perplex-
ity (trained with different random seeds), whereas the
dashed line represents the best baseline model.

Baseline Sandwich16
6

17.5

18.0

18.5

19.0

19.5
Pe

rp
le

xi
ty

Figure 6: Performance on the WikiText-103 develop-
ment set of the Sandwich16

6 transformer and the base-
line. Each model is trained with 5 different random
seeds to assess the perplexity distribution.

sublayer reorderings of the Baevski and Auli (2019)
model, trained on the WikiText-103 word-level lan-
guage modeling benchmark (Merity et al., 2016).

Does this particular pattern improve perfor-
mance in other settings as well? To find out, we
apply sandwich transformers to three other tasks:
word-level language modeling on a different do-
main (Section 5.1), character-level language mod-
eling (Section 5.2), and machine translation (Sec-
tion 5.3).

Results show that as we drift away from our
original setting, sandwich transformers provide di-
minishing gains, but always perform at least as well
as the baseline transformers (provided that the sand-
wich coefficient is properly tuned). This finding
suggests that different settings may benefit from
different sublayer reordering patterns.



Model PPL

Baseline (5 runs) 11.89 ± 0.35
kNN-LM (Khandelwal et al., 2019) 10.89
Sandwich16

7 10.83

Table 4: Performance on the Toronto Books Corpus lan-
guage modeling test set. The baseline model (Baevski
and Auli, 2019) is trained over 5 random seeds. The
sandwich coefficient is tuned on the validation set and
we run our model on the test set only once.

5.1 Books-Domain Language Modeling
We first apply sandwich transformers to a differ-
ent domain, while retaining the other architectural
aspects and hyperparameter settings from Baevski
and Auli (2019). Specifically, we use the Toronto
Books Corpus (Zhu et al., 2015), which has previ-
ously been used to train GPT (Radford et al., 2018)
and also BERT (Devlin et al., 2019) (combined
with Wikipedia). The corpus contains roughly
700M tokens.

We use the same train/validation/test split
as Khandelwal et al. (2019), as well as their to-
kenization, which uses BERT’s vocabulary of 29K
byte-pair encodings. Since the vocabulary is much
smaller than WikiText-103’s, we replace the adap-
tive word embedding and softmax of Baevski and
Auli (2019) with a tied word embedding and soft-
max matrix (Press and Wolf, 2017; Inan et al.,
2017). Finally, we tune the sandwich coefficient
on the development set for k ∈ {4, . . . , 8}, i.e., a
neighborhood of 2 around the best value we found
for WikiText-103 (k = 6).

Table 4 shows that the sandwich transformer
transfers well to the books domain, improving
performance by 1.06 perplexity, achieving similar
performance to the datastore-augmented kNN-LM
(Khandelwal et al., 2019), which is the state of the
art on WikiText-103 (see Section 4).

5.2 Character-level Language Modeling
Modeling text as a stream of characters, rather than
word or subword tokens, presents a different mod-
eling challenge: long-range dependencies become
critical, and the vocabulary takes on a more uni-
form distribution. We apply our sandwich reorder-
ing to the adaptive span model of Sukhbaatar et al.
(2019), which is state of the art on the popular
English-language benchmark text8 and is currently
a close second on enwik8.3 The adaptive span

3Both datasets are taken from http://mattmahoney.
net/dc/textdata.html

model learns to control each attention head’s maxi-
mal attention span, freeing up memory in the bot-
tom layers (which typically need very short atten-
tion spans) and applying it to the top layers, allow-
ing the top-level attention heads to reach signifi-
cantly longer distances. The adaptive span model’s
efficient use of attention also results in a significant
speed boost.

We tune the sandwich coefficient on the devel-
opment set for k ∈ {1, . . . , 8} (the baseline model
has 24 transformer layers). We do not modify any
hyperparameters, including the number of training
epochs. Table 5 compares the baseline model’s
performance with the sandwich transformer’s. On
text8, the sandwich transformer performs within
the baseline’s random seed variance. On enwik8,
the sandwich transformer gains an improvement
of about 0.007 bits-per-character, matching the
state of the art results obtained by the Transformer-
XL-based Compressive Transformer of Rae et al.
(2020).

However, our approach is able to achieve this re-
sult without applying the Transformer-XL’s recur-
rent attention, which is much slower (Sukhbaatar
et al., 2019), and without adding additional param-
eters (the compressive transformer uses 277M pa-
rameters, while our baseline and sandwich models
use only 209M).

5.3 Machine Translation
Sandwich Decoders Tranformer-based transla-
tion models (Vaswani et al., 2017) consist of an
encoder and decoder, where the encoder has in-
terleaved self-attention and feedforward sublayers
(just as in language models), while the decoder in-
cludes an additional sublayer, cross-attention (c),
between every pair of self-attention and feedfor-
ward sublayers. Cross-attention sublayers attend
to the encoder’s representations of the input sen-
tence’s tokens.

Following our notation from Section 2, a trans-
former decoder layer modifies the sequence of to-
kens in the target language Y0, using the encoded
source tokens X, as follows:

Y1 = self-attention(Y0) +Y0

Y2 = cross-attention(Y1,X) +Y1

Y3 = feedforward(Y2) +Y2

Applying the sandwich pattern to the encoder
follows the same methodology as our previous ex-
periments. However, for the decoder, we group the

http://mattmahoney.net/dc/textdata.html
http://mattmahoney.net/dc/textdata.html


Model text8 (BPC) enwik8 (BPC)

Transformer-XL (Dai et al., 2019) 1.08 0.99
Adaptive Span (Sukhbaatar et al., 2019) 1.07 0.98
Compressive (Rae et al., 2020) — 0.97

Baseline (Adaptive Span; 5 Runs) 1.0802 ± 0.0103 0.9752 ± 0.0008
Sandwich24

3 1.076 —
Sandwich24

5 — 0.968

Table 5: Performance on character-level language modeling, evaluated on the enwik8 and text8 test sets. The
baseline model (Sukhbaatar et al., 2019) is trained over 5 random seeds. The sandwich coefficient is tuned on each
benchmark’s validation set, and we run our model on the test only once.

self-attention (s) and cross-attention (c) sublay-
ers, and treat them as a single unit for reordering
purposes (sc). For example, a three layer decoder
(scfscfscf) with a sandwiching coefficient of
k = 1 would be: scscfscff. We apply the
sandwich pattern to either the encoder or decoder
separately, while keeping the other stack in its orig-
inal interleaved pattern.

Experiment Setting As a baseline, we use the
large transformer model (6 encoder/decoder layers,
embedding size of 1024, feedforward inner dimen-
sion of 4096, and 16 attention heads) with the hy-
perparameters of Ott et al. (2018). We also follow
their setup for training and evaluation: we train
on the WMT 2014 En-De dataset which contains
4.5M sentence pairs; we validate on newstest13 and
test on newstest14. We use a vocabulary of 32K
symbols based on a joint source and target byte pair
encoding (Sennrich et al., 2016). For inference we
use beam search with a beam width of 4 and length
penalty of 0.6, following Vaswani et al. (2017) and
Ott et al. (2018). As before, we do not modify our
model’s hyperparameters or training procedure.

Results Table 6 shows that reordering of either
the encoder or decoder does not have a significant
impact on performance, across the board. We also
find that using the most extreme sandwich decoder
(sc)6f6 performs almost exactly the same as the
average baseline; this result is consistent with our
observation from Section 4, where we show that
the extreme sandwich language model (s16f16)
performs as well as the baseline.

Discussion This experiment indicates that a re-
ordering pattern that benefits one particular task
(language modeling) might not carry the same per-
formance gains to another (machine translation).
However, it also demonstrates the general robust-
ness of transformer architectures to sublayer re-
ordering, as we did not observe any major perfor-

Sandwich Encoder Decoder
Coefficient Sandwich Sandwich

0 (Baseline) 28.74 ± 0.15

1 28.71 28.64
2 28.71 28.56
3 28.81 28.67
4 28.48 28.66
5 28.45 28.76

Table 6: BLEU on newstest2014 En-De. Our encoder
(decoder) sandwich model keeps the decoder (encoder)
unmodified. We train the baseline model (Transformer-
large with the hyperparameters of Ott et al., 2018) 5
times with different random seeds.

mance degradation. Since the sandwich pattern
naively groups self- and cross-attention sublayers
together, it is also possible that a reordering pat-
tern that takes all three sublayer types into account
could potentially improve performance.

6 Analysis

At the time of writing, we do not have an expla-
nation for why sublayer reordering improves per-
formance on language modeling. However, we
are able to determine that sandwich transformers
spread their attention in a different fashion than
interleaved models.

We analyze two baseline models and two
sandwich166 models trained with different seeds on
the WikiText-103 dataset, by first recording the at-
tention values that each token’s heads assign to all
other tokens during inference on the validation set.
Given the attention outputs of two models, we then
compute the models’ attention distance for each
token, and for each self-attention sublayer. This
metric compares the attention distribution in the ith
self-attention sublayer of the first model to that of
the ith self-attention sublayer of the second model,
for a specific token.

Given a token and a self-attention sublayer,



Model Pair Average Attention Distance

Baseline – Baseline 1.081 · 10−3

Sandwich – Sandwich 1.067 · 10−3

Baseline – Sandwich 1.289 · 10−3 ± 0.049 · 10−3

Table 7: The average attention distance, on the
WikiText-103 validation dataset, of each model pair.
Since there are two baselines and two sandwich trans-
formers (initialized with different random seeds), the
distance between the baseline and sandwich models
is averaged over all four baseline-sandwich combina-
tions.

we use the Hungarian algorithm (Kuhn, 1955)
to find a matching of heads in the first model
to heads in the second model [a1, b1], . . . , [a8, b8]
such that

∑8
i=1 EMD(ai, bi) is minimized, where

EMD(ai, bi) is the earth mover’s (Wasserstein) dis-
tance between the attention distributions of head ai
in the first model and head bi in the second model.
That minimal value is the attention distance for that
token, in that layer. We then average the attention
distances across all tokens and layers.

Table 7 shows the average attention distances
between every pair of models. We observe that
models of the same architecture have significantly
lower attention distances than models with differ-
ent sublayer orderings. This indicates that sublayer
reordering has a strong effect on the attention func-
tion that the model learns in each head. Future
investigations of what this difference is, in a qual-
itative sense, could potentially provide important
insights for designing better reordering patterns.

7 Related Work

7.1 Neural Architecture Search
In this paper, we manually search through a con-
strained transformer architecture space, after an-
alyzing the results of two small-scale random
searches. This human-in-the-loop method for archi-
tecture search has advantages over previous meth-
ods (Jozefowicz et al., 2015; Zoph and Le, 2016;
Tan and Le, 2019) since it requires that only a few
dozen models be trained, unlike typical architec-
ture search methods that require training thousands
of instances, consuming massive computational re-
sources.

While we do find a better performing trans-
former, our goal is not only to do so, but to bet-
ter understand how sublayer ordering affects trans-
former models. Future work could apply methods
from the architecture space literature to the sub-

layer ordering problem. Furthermore, a better un-
derstanding of the inner workings of transformers
could inspire more efficient, constrained architec-
ture search.

7.2 Transformer Modifications

Much recent work has been devoted to improving
transformers by modifying their sublayers. This in-
cludes sparsifying their attention patterns, either in
an input-based manner (as in Correia et al., 2019),
or in a static manner (as in Guo et al., 2019). So
et al. (2019) proposed modifying the transformer
by adding convolutions and changing the activation
function, while others have demonstrated that dif-
ferent initialization schemes (Zhang et al., 2019)
and repositioning the layer normalization (Nguyen
and Salazar, 2019) can also have a positive effect
on performance.

In this paper, we do not modify the sublayers at
all, but simply rearrange their order. The perfor-
mance gains from sublayer reordering are orthog-
onal to improving the sublayers themselves, and
could be combined to achieve even better perfor-
mance.

Recently, Lu et al. (2019) introduced a new trans-
former ordering, where instead of stacking layers
of the form sf (as in the vanilla interleaved trans-
former), they stack layers of the form fsf. In
order keep the total parameter count unchanged,
Lu et al. cut the hidden dimension of their feed-
forward sublayers by half. However, the overall
depth of the network is increased by 50%, which
causes a similar increase in the model’s inference
time (Sanh, 2019).

8 Conclusion

We train random transformer models with re-
ordered sublayers, and find that some perform bet-
ter than the baseline interleaved transformer in lan-
guage modeling. We observe that, on average, bet-
ter models contain more self-attention sublayers at
the bottom and more feedforward sublayer at the
top. This leads us to design a new transformer stack,
the sandwich transformer, which significantly im-
proves performance over the baseline at no cost in
parameters, memory, or runtime.

We then show that the sandwich ordering also im-
proves language modeling performance on a differ-
ent word-level language modeling benchmark, and
that the sandwich pattern can be used to achieve
state of the art results on character-level language



modeling. Although sandwich ordering does not
improve translation models, we show that they are
robust to layer order changes, and that even ex-
treme reorderings (all attention sublayers at the
bottom, and all the feedforward sublayers at the
top) perform as well as the baseline.

Sublayer reordering can improve the perfor-
mance of transformer models, but an ordering
that improves models on one group of tasks
(word/character-level language modeling) might
not improve the performance on another task. By
showing that sublayer ordering can improve mod-
els at no extra cost, we hope that future research
continues this line of work by looking into optimal
sublayer ordering for other tasks, such as transla-
tion, question answering, and classification.
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