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Abstract

Increasing the input length has been a driver
of progress in language modeling with trans-
formers. We identify conditions where shorter
inputs are not harmful, and achieve perplex-
ity and efficiency improvements through two
new methods that decrease input length. First,
we show that initially training a model on
short subsequences before moving on to longer
ones both reduces overall training time and,
surprisingly, substantially improves perplex-
ity. Second, we show how to improve the ef-
ficiency of recurrence methods in transform-
ers, which let models condition on previously
processed tokens when generating sequences
that exceed the maximal length the transformer
can handle at once. Existing methods re-
quire computationally expensive relative posi-
tion embeddings; we introduce a simple alter-
native of adding absolute position embeddings
to queries and keys instead of to word embed-
dings, which efficiently produces superior re-
sults. We show that these recurrent models
also benefit from short input lengths. Com-
bining these techniques speeds up training by
a factor of 1.65, reduces memory usage, and
substantially improves perplexity on WikiText-
103, without adding any parameters.1

1 Introduction

Scaling up transformer (Vaswani et al., 2017) lan-
guage models (Radford et al., 2019; Lewis et al.,
2019; Raffel et al., 2019; Brown et al., 2020) has
been an important driver of progress in NLP. Lan-
guage models require data to be segmented into
subsequences for both training and inference: mem-
ory constraints limit a language model to handling
at most a few thousand tokens at once, while many
training and evaluation datasets are much longer.

1Our code is available at https://github.com/
ofirpress/shortformer

Recent work focuses on increasing the length of in-
put subsequences, which determines the maximum
number of tokens a model can attend to (Baevski
and Auli, 2018; Sukhbaatar et al., 2019; Kitaev
et al., 2020; Roy et al., 2020).

We challenge the assumption that longer input
subsequences are always better by showing that
existing transformers do not always effectively use
them. We then introduce new methods based on
shorter input subsequences that improve runtime,
memory efficiency, and perplexity.

We first investigate how input subsequence
length affects transformer language models (§3).
Naı̈ve evaluation—where we split a large evalua-
tion set into multiple nonoverlapping subsequences,
each evaluated independently—initially supports
the commonly-held belief that models that train
and do inference on longer subsequences achieve
better perplexity (Table 1, col. 3).

However, when we evaluate each model with
a sliding window (Baevski and Auli, 2018), out-
putting one token at a time using the maximal
amount of context, we find—surprisingly—that
models using subsequences exceeding 1,024 to-
kens do not further improve performance (Table 1,
col. 5).

We conclude that the performance gains (using
naı̈ve evaluation) of models that use longer sub-
sequences occur not only because of their better
modeling ability, but partly because they divide the
evaluation set into longer subsequences. This di-
vision helps because of an issue we call the early
token curse: by default, early tokens in a subse-
quence will have short histories to attend to. Using
longer subsequences means fewer tokens will suf-
fer from the early token curse. For example, when
using inputs of length 1,024, about 94% of tokens
get to attend to more than 64 preceding tokens. If
we use inputs of length 128, only 50% of tokens
get to attend to 64 or more preceding tokens.

https://github.com/ofirpress/shortformer
https://github.com/ofirpress/shortformer


Based on this analysis, we explore how to im-
prove models by using shorter inputs. We introduce
two techniques.

Staged Training (§4) First, we show that ini-
tially training on shorter subsequences (before mov-
ing to longer ones) leads not only to much faster
and more memory-efficient training, but it surpris-
ingly also greatly improves perplexity, suggesting
that longer inputs are harmful early in training.

Position-Infused Attention (§5) Second, we
consider a natural way to avoid the early token
curse during training and inference: attending to
cached representations from the previously evalu-
ated subsequence (Dai et al., 2019). This approach
interferes with conventional absolute position em-
beddings in a way that forced Dai et al. to use rela-
tive position embeddings, which are computation-
ally expensive. We introduce a fast, simple alter-
native: instead of adding absolute position embed-
dings to word embeddings—thereby entangling a
word’s content and positional information—we add
them to the keys and queries in the self-attention
mechanism (but not to the values). This does not
increase parameter count or runtime. Token repre-
sentations can then be cached and reused in subse-
quent computations. We show that when using this
method, shorter subsequence models outperform
longer ones.

Finally, we show additive gains from combin-
ing staged training and position-infused attention
(Shortformer, §6), resulting in a model that trains
much quicker and achieves better perplexity on
WikiText-103. We also show that these results
transfer to language modeling on the Toronto Book
Corpus (§A.5, appendix).

2 Background and Experimental Setup

Transformer language models map a list of tokens
xn−L:n−1 to a probability distribution over the next
token xn. We refer to the list of tokens as the cur-
rent input subsequence (whose length is L). Causal
masking lets us make L predictions at once, with
the prediction for token i + 1 conditioned on the
ith token and all previous inputs xn−L:i−1, but not
on future inputs. We define the number of tokens
the model can attend to at each timestep as its ef-
fective context window. Note that L is not to be
confused with the (typically much greater) length
of a training or evaluation dataset.

During inference, language models can be used

for two distinct tasks: generation and evaluation. In
order to define these tasks, we first define nonover-
lapping and sliding window inference.

Nonoverlapping Inference To evaluate a string
longer than L, we can evaluate each subsequence
of L tokens independently. This fast approach is
commonly used during training; if used, tokens in
one subsequence cannot condition on those in the
previous subsequence, giving rise to the early token
curse discussed in §1. See Figure 1(a).

Sliding Window Inference An alternative to the
above is to use a sliding window during inference.
Here, we choose a stride S between 1 and L − 1
and advance the window by S tokens after each
forward pass.2 This means that L− S tokens from
the previous block are re-encoded, and only S new
tokens are outputted. The advantage is that all
outputs in each subsequence after the first have
at least L − S previous tokens to condition on.
However, since tokens must be re-encoded multiple
times, this approach is much slower. When S = 1,
we output one token every inference pass, each
using the maximal context window, but this is the
slowest approach. See Figure 1(b).

Minimal and Maximal Effective Context Win-
dow Sizes In the nonoverlapping approach, the
min. and max. effective context window sizes are
1 and L, respectively. In the sliding window ap-
proach, the max. context window size is still L, but
the min. context window size is now L− S + 1.

Evaluation vs. Generation In evaluation, a
model assigns a perplexity score to a given se-
quence. Evaluation is done using either nonover-
lapping inference or with a sliding window of any
stride; since we already have the target sequence
we can simultaneously make predictions for multi-
ple timesteps using causal masking. In generation,
a model generates a new sequence, as in demonstra-
tions of GPT-3 (Brown et al., 2020). Generation is
done only with a sliding window with stride S = 1,
which we refer to as token-by-token generation.
During generation, we append to the input a single
new token, get a prediction from the model about
the next token (e.g., using beam search or picking
the token with the highest probability); the process
is then repeated.3

2Nonoverlapping inference can be viewed as sliding win-
dow inference with stride L.

3In this paper we do not consider open-ended generation;
we generate the dev. set, and for next-token prediction we



(a)

a1 b2 c3 d1 e2 f3
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a1 b2 c3 b1 c2 d3 c1 d2 e3 d1 e2 f3

(c)

a1 b2 c3 d4 e5 f6

Figure 1: Language model modes for generating or evaluating 6 tokens (a, b, . . . , f) when subsequence length
L = 3. The numbers denote the position embeddings (P.E.). (a) Nonoverlapping (§2). (b) Sliding window, stride
S = 1 . Here, after the first inference pass we ignore all outputs other than the last (§2). (c) Caching (§5.2) where
each subsequence attends to representations of the previous one. (In the next iteration, tokens d, e and f become
the cache, with P.E. 1, 2 and 3, the three new tokens get P.E. 4, 5, and 6.)

Experimental Setup Our baseline is the Baevski
and Auli (2018) model, henceforth B&A, trained
and evaluated on WikiText-103 (Merity et al.,
2016). We use this baseline because of its promi-
nent role in recent language modeling develop-
ments (Khandelwal et al., 2020; Press et al., 2020).
The training set contains 103.2 million tokens from
English Wikipedia. The B&A model has 16 trans-
former layers of dimension 1,024, with 8 heads
in each self-attention sublayer, and feedforward
sublayers with an inner dimension of 4,096. This
model ties the word embedding and softmax matri-
ces (Press and Wolf, 2017; Inan et al., 2017) and
uses sinusoidal position embeddings. It has a sub-
sequence length of 3,072 tokens and achieves a
perplexity of 18.65 ± 0.24 (std. dev.) on the devel-
opment set. In our experiments, other than varying
the subsequence length, we modify no other hyper-
parameters, including the random seed and number
of training epochs (205).

3 How Does Context Window Size Affect
Transformers?

Segmenting a corpus into subsequences results in
different effective context windows for different
timesteps depending on where they fall in a seg-
ment. Subsequence length L is an upper bound
on the effective context window at each timestep.
When making the first prediction, the model attends
only to the first input token. When making the sec-
ond prediction, the model attends to the first two
inputs, and so on, up to the Lth timestep where the
model can attend to all input tokens when making
the Lth prediction.

3.1 Context Window Size Matters

Table 1 explores the effect of subsequence length
in the B&A model on training runtime and on dev.
set perplexity and runtime.4 We fix the number

use the ground truth token. This has the same complexity as
sampling the token with the highest probability.

4For consistency, throughout the paper we run inference
with a batch size of one. This causes models shorter than

Train Inference

Nonoverlapping Sliding Window

Subseq.
Length

(Token-by-token)

Speed ↑ PPL ↓ Speed ↑ PPL ↓ Speed ↑

32 28.3k 35.37 2.4k 24.98 74
64 28.5k 28.03 4.8k 21.47 69
128 28.9k 23.81 9.2k 19.76 70
256 28.1k 21.45 14.8k 18.86 63
512 26.1k 20.10 18.1k 18.41 37
1024 22.9k 19.11 18.3k 17.97 18
1536 18.4k 19.05 17.1k 18.14 11
3072 13.9k 18.65 14.7k 17.92 5

Table 1: Subsequence length’s effects on performance
of the B&A model on the WikiText-103 dev. set. The
baseline is the last row. Token-by-token inf. was com-
puted with a sliding window stride S = 1 to output
one token at a time; see §2. We measure speed in
tok./sec. per GPU and use a batch size of 1 for inf.

of tokens in each batch to 9,216 but vary the sub-
sequence length L and batch size (so the product
of the batch size and subsequence length remains
at 9,216). We report results for both nonoverlap-
ping inference and sliding window inference with
stride S = 1, which generates only one new token
per forward pass; it thus has the maximal effec-
tive context window for each generated token. We
find that performance increases as S decreases un-
til it reaches a peak and then stops improving (not
shown in Table 1).5

We derive the following conclusions:
Training on long sequences is expensive.

Models trained on subsequences of length 256 are
twice as fast as models trained on subsequences of
3,072 tokens, but gains for even shorter lengths are
negligible (Tab. 1, col. 2).

Long subsequence lengths can improve re-
sults. When using the naı̈ve approach, nonover-

L = 512 to run slowly (in N.o. eval.), although during batched
N.o. eval. they are slightly faster than the L = 512 model.

5For example, the L = 3,072 model’s performance peaked
at S = 512 (used in Baevski and Auli (2018)) and then
stopped improving. Thus, the result shown in Table 1 for
that model with S = 1 can also be achieved with S = 512
even though that runs 500 times faster, at 2.5k tok./sec.



lapping evaluation, we see a monotonic decrease in
dev. perplexity when increasing L (Tab. 1, col. 3).

Increasing the minimum effective context
window size is more important than increasing
the maximum one. Using a sliding window for
token-by-token evaluation substantially improves
results for all models (Tab. 1, col. 5). Here, we
see negligible improvement between the models
trained with subsequence lengths of 1,024 and
3,072 tokens (0.05 perplexity). This approach im-
proves results by increasing the minimum amount
of context available at each timestep which indi-
cates that long contexts may not be beneficial to
transformer models, but very short contexts are
harmful. However, sliding window inference can
be expensive since each token is encoded many
times. For example, token-by-token inference for
the L = 3,072 model is almost 300 times slower
than nonoverlapping inference.

4 Training Subsequence Length

§3 results show that models trained on shorter sub-
sequences can be effective at test time, and are
much faster to train. We further explore this below.

4.1 Staged Training
We propose a two-stage training routine that ini-
tially uses short input subsequences followed by
long subsequences.6 This method was previously
applied to speed up the training of BERT (Devlin
et al., 2019), but we show that it also improves
perplexity.

We use sinusoidal position embeddings; learned
position embeddings, which we do not consider,
create a dependency between the parameterization
and subsequence length. In our experiments, we
neither modify nor reset the state of the optimiza-
tion algorithm between the two stages.

4.2 Experiments
Our experimental setup is described in §2. We
do not change any hyperparameters other than re-
ducing subsequence length while correspondingly
increasing batch size to keep the number of tokens
per batch constant. As in the baseline, all models
are trained for 205 epochs.

All models are trained in two stages; the second
stage always uses a subsequence length of 3,072,

6Curriculum learning (Bengio et al., 2009) trains on easier
inputs before progressing to harder ones. Our approach does
not change the order in which the training examples are given
to the model, but instead modifies their lengths.

Initial Stage Subseqence Length
32 64 128 256 512 1024 1536

25 17.94 17.57 17.58 18.19 18.06 18.20 18.77
50 17.81 17.59 17.52 18.08 18.01 18.14 18.62
75 17.93 17.61 17.55 18.01 18.05 18.03 18.57
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s

100 18.14 17.67 17.62 18.00 18.10 18.00 18.51
125 18.61 17.88 17.70 18.00 18.13 17.98 18.49
150 19.45 18.37 17.98 18.01 18.15 18.00 18.49
175 21.16 19.51 18.57 18.23 18.20 18.08 18.57
200 35.38 28.03 23.80 21.45 19.63 18.56 18.84

Table 2: Each model’s perplexity at the end of training
(dev. set, nonoverlapping eval.). All models have a sub-
sequence length of 3,072 tokens at the end of training.
The B&A baseline achieves 18.65 ± 0.24 perplexity.

since that lead to the best performance (discussed
at end of this subsection).

Appendix Table 6 shows the time each training
routine takes to match the baseline model’s per-
formance on the validation set of WikiText-103.7

Many configurations match this performance in
less than half the time it takes to train the baseline
itself; some reach baseline performance in only
37% of the time needed to train the baseline.

Although all models take less time to train than
the baseline, Table 2 shows that many outper-
form it. For example, the best model—trained
with subsequence length L = 128 until epoch 50—
outperforms the baseline by 1.1 perplexity despite
completing training in 87% of the time the baseline
takes to do so. The model that trains with L = 128
until epoch 100 achieves similarly strong results
(17.62 perplexity) and finishes training in 74% of
the time it takes the baseline.8

These results are very robust to the choice of
initial stage subsequence length and number of
epochs. Table 2 shows that all models with an
initial stage of L = 1,024 tokens or less that switch
to the second stage at epoch 125 or before beat the
baseline by a large margin at the end of training.
Additionally, Appendix Table 6 shows that those
models match the baseline’s perplexity in at most
71% of the time it takes to train the baseline.

When we use nonoverlapping evaluation, the
B&A baseline obtains 18.65 perplexity on the
development set; our best model obtains 17.52.
When we use sliding window evaluation (following
Baevski & Auli, we use stride S = 512), our best

7Table 7 in the appendix shows the epoch at which every
model matched the baseline’s performance.

8Table 8 in the appendix shows the total time it took to
train each model.
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Figure 2: Inputs to the self-attention sublayer, conventionally (left) and with position-infused attention (right), for
L = 3, at timestep 3. The numbers denote the position embeddings.

model obtains 16.89 perplexity, a large improve-
ment on the 17.92 B&A result in that setting. On the
test set, using the same sliding window evaluation,
our model obtains 17.56 perplexity, a substantial
gain over the baseline’s 18.70 test-set perplexity.
Appendix Table 10 shows that our best model uses
almost five times less memory during the first stage
than the baseline.

We also found that setting L to less than 3,072
tokens in the second stage degraded performance.
(Appendix Table 9 shows staged training results
with an initial stage length of 128 for 50 epochs
(as in the best model) and varying lengths for the
second stage. We found this to also be true for other
initial stage lengths and epochs.) Unlike results in
Table 1, where we show that models with L larger
than 1,024 do not substantially improve token-by-
token generation perplexity, models trained using
staged training improve when given longer inputs
(Appendix Table 9). Further, we explored using
more than two stages (up to six), but this did not
outperform our two-stage curriculum.

Finally, Appendix A.5 shows that staged train-
ing substantially improves on the Toronto Book
Corpus (Zhu et al., 2015).

5 Repositioning Position Embeddings

Sliding window inference substantially improves
performance by increasing the minimum effective
context window size. But it is very slow. We could
solve this by letting the model attend to representa-
tions of the previous subsequence during inference
on the current one.

In this case, the same token representations
would be used in different positions since a token
generated near the end of one subsequence would
be cached and reused near the start of the next one.
However, transformer model representations entan-
gle positional and content information, so a cached

token representation would encode an incorrect po-
sition when reused in a new position.

TransformerXL (Dai et al., 2019) uses relative
position embeddings to solve this problem. How-
ever, that approach is slower and uses more param-
eters and memory than the baseline transformer.9

We solve this using no extra parameters, mem-
ory, or runtime. We also show that our method
can use much shorter input subsequences and still
achieve superior performance.

Transformer Language Models The baseline
transformer LM, given a token list T of length L
and a tensor P containing the first L position em-
beddings, produces L next-token predictions using
the following procedure:

1. Embed each token in T , producing tensor X.

2. Add the position embedding of each index to
the token at that index: X = X+P.

3. Feed X through each transformer layer.
The self-attention sublayer in each
transformer layer is invoked as follows:
self-attention(key=X, query=X, value=X)

4. Transform the outputs of the last transformer
layer using the softmax layer, giving L next-
token probability distributions.

5.1 Position-Infused Attention (PIA)
We propose to let the model reuse previous out-
puts by making each output contain no explicit
positional information. To do this, we modify the

9The self-attention coefficients between q queries and k
keys in TransformerXL are the sum of two dot products of size
q · k; the unmodified attention sublayer and our PIA method
both compute only one dot product of size q ·k. We also bench-
marked the TransformerXL model using its publicly released
code and found that their relative position embeddings slow
inference by 22% and require 26% more parameters than their
implementation of the unmodified self-attention sublayer.



model so that it does not add position embeddings
at the beginning of the computation (step 2), but
rather adds them to the query and key vectors at
each layer (but not to the value vectors). The out-
puts at each layer are the transformed, weighted
sums of the value vectors, and, since the value vec-
tors in our model do not contain explicit positional
information, the outputs also do not.

Formally, steps 1 and 4 do not change, step 2
is omitted, and step 3 is modified to invoke the
self-attention sublayer as follows:

self-attention(key=X+P, query=X+P,

value=X)

Figure 2 (b) depicts this method.
Although PIA sublayer outputs contain no ex-

plicit positioning information, the attention mech-
anism can still compute position-dependent out-
puts because positional information is added to
the query and key vectors. Our method is imple-
mentable in just a few lines of code.

5.2 PIA Enables Caching

In the unmodified transformer, to generate a string
whose length exceeds L, it would have to be split
into separate subsequences, and the model would
be unable to attend to the previous subsequence
when generating the current one.

Using PIA, we can store and attend to represen-
tations of the previous subsequence since they no
longer contain any explicit positioning information.

Therefore, all our PIA models use a cache, where
representations from the previous forward pass are
stored and attended to in the next forward pass.

Caching makes generation faster. The com-
plexity of the attention mechanism is O(q·k) where
q is the number of queries (outputs) and k is the
number of key-value pairs (inputs). To generate
a sequence whose length exceeds L using token-
by-token generation in the unmodified transformer
(with subsequence length L), attention takes O(L2)
time (since there are L queries and L keys). Using
PIA and caching, we can reuse L − 1 of the pre-
vious outputs at every layer. Thus, our attention
sublayer takes O(L) time (because now there is a
single query and L keys).

Our approach is useful in scenarios where we
need to evaluate or generate sequences that are
longer than the model’s subsequence length. There-
fore, it would not be applicable to sequence-to-

sequence tasks such as sentence-level translation,
where sequence lengths are short.

Most language models, including B&A, train on
their data as nonoverlapping subsequences. This
means that training subsequences can be shuffled at
each epoch and consumed in random order. How-
ever, when using PIA, we would like the cache to
contain the previous subsequence. We therefore
do not shuffle the data, making the cached subse-
quence the previously occurring one.

Figure 1(c) depicts training with a cache that con-
tains representations of the previous subsequence.

5.3 Experiments

We use the experimental setup described in §2.
The B&A baseline achieves 18.65 on the devel-

opment set. We train two additional baselines, the
first uses PIA without caching and the second uses
caching but no PIA. If just PIA is used (without
caching), performance degrades to 19.35 perplex-
ity, but the model’s speed and memory usage do not
change. Using caching without PIA severely hurts
performance, obtaining 41.59 perplexity. Disabling
data shuffling in the PIA-only model achieves simi-
lar performance to that model when it does use data
shuffling, at 19.44 perplexity. Not shuffling the data
is necessary for recurrent-style training that caches
previously computed subsequence representations.

Our next experiments use the recurrent-style
training of Dai et al. (2019), where we receive L
new tokens at every training iteration and attend to
L′ cached representations (of the subsequence of
tokens that came immediately prior to the L new to-
kens). As before, we output L predictions at every
training iteration. This means that the maximal and
minimal effective context window sizes are L′ +L
and L′ + 1, respectively.

In all our models with PIA and caching, we set
L′ = L because a manual exploration of different
models where L′ 6= L did not yield better results.

Table 3 compares the results of our models
that use PIA and caching to the baseline on the
WikiText-103 dev. set. Evaluation and generation
speeds are shown in the nonoverlapping (N.o.) and
sliding window (S.W., with stride S = 1) speed
columns, respectively.10 Unlike in the baseline,
token-by-token evaluation in our model achieves
the same perplexity as nonoverlapping evaluation

10Note that Baevski and Auli (2018) show that the baseline
model can also achieve 17.92 during S.W. evaluation, when
S = 512, with a speed of 2.5k tokens per second.



Train Inference

Subseq.
Length

Speed ↑
Speed ↑ PPL ↓ N.o. S.W.

32 22.0k 20.53 2.0k 49
64 23.8k 19.07 4.1k 51
128 24.4k 18.37 7.9k 50
256 23.5k 17.92 12.8k 48
512 21.5k 17.85 14.5k 46
768 17.6k 18.16 13.8k 43
1024 16.6k 18.19 13.9k 39
1536 12.9k 19.11 7.9k 34

Baseline 13.9k 18.65 14.7k -
(3072) 17.92 - 5

Table 3: Dev. perplexity and speed for PIA models
trained with different subsequence lengths (L). PIA
models attend to L new and L cached tokens at each in-
ference pass. N.o. is nonoverlapping eval.; S.W. is slid-
ing window eval., where we always use S = 1 (token-
by-token) here. The baseline is evaluated with both
evaluation methods. We measure speed in tok./sec. per
GPU and use a batch size of 1 for inference.

since in both cases, the predictions for each in-
put subsequence are conditioned not only on the
current input, but also on the previous input, mak-
ing the context window the same in both inference
modes (in both cases, at every timestep, the context
window is all tokens up to that timestep).

Table 3 shows that as we increase subsequence
length, perplexity improves, peaking at 512 before
starting to degrade. Our best model obtains 17.85
perplexity, which is multiple standard deviations
better than the baseline (18.65, N.o.). Table 5 in
§6 shows a similar gain on the test set. The best
model runs 1% slower than the baseline during N.o.
eval. (since caching reduces the speed gain from
smaller attention matrices in this mode). Table 10
(appendix) shows that it uses less than half of the
memory the baseline does during training. Our best
model trains 55% faster than the baseline.

Our best model, with subsequence length 512,
has attention matrices of size 512 · 1,024 (since we
have 512 queries—one per every new token—and
1,024 keys and 1,024 values—one per every new
token and every cached token). In the baseline, all
attention matrices are of size 3,072 · 3,072.

Caching previously computed representations
lets us do token-by-token generation efficiently
when generating more than L tokens. Our model
is nine times faster than the baseline at token-by-
token generation even as it achieves better perplex-
ity and uses much less memory (Tab. 3, col. 5).

First Stage
Subseq. Length

Train Inference

Speed ↑ PPL ↓

32 21.6k 17.66
64 22.6k 17.56
128 22.9k 17.47
256 22.5k 17.50

PIA + Cache w/o 21.5k 17.85Staged Training

Table 4: Dev. perplexity for models that use PIA,
caching, and staged training (with final subseq. length
of 512). We measure speed in tok./sec. per GPU. Evalu-
ation speed is the same for all models, at 14.5k tok./sec.

PIA and caching also greatly improve perplex-
ity on the Toronto Book Corpus; see A.5 in the
appendix.

6 Shortformer Results

To assess whether the gains from staged training,
PIA and caching are additive, we take our best
caching PIA model, with subsequence length 512,
and apply staged training to it, training it with a
subsequence length of between 32 to 256 for the
first half of training.11 Table 4 shows the results.
As in §4.2, where staged training was applied to
the unmodified baseline, the results are very robust
to the choice of initial stage subsequence length,
with all the different choices improving perplexity
over the model that does not use staged training.

The best model (with initial subsequence length
128), which we call Shortformer, achieves 17.47
dev. set perplexity and trains 65% faster than the
baseline. Since its attention matrices are of dimen-
sion 512 · 1,024 (the baseline’s are 3,072 · 3,072),
our model uses less memory (§A.4, appendix). It
has the same number of parameters as the baseline.

Figure 3 (appendix) compares our best models
using each method we presented (and their com-
bination) to the baseline. It shows that combin-
ing caching, PIA and staged training (Shortformer)
yields the quickest training and best perplexity
when using nonoverlapping evaluation. Evaluation
speed is similar for all of these models.

Finally, Table 5 compares our best models on the
test set of WikiText-103 to the state of the art.12

Shortformer is almost twice as fast to train as
the baseline and achieves superior results. Like the

11We picked 50% of epochs as the length of the first stage
since that produced near-optimal results at a fast speed in §4.

12We benchmarked speed, on V100 GPUs, for all models
that had publicly available code.



Train Inference (Test)

Model Param. ↓ Speed ↑ Mode Speed ↑ PPL ↓

Baseline 247M 13.9k N.o. 14.7k 19.40
S.W. 2.5k 18.70

TransformerXL∗ 257M 6.0k N.o. 3.2k 18.30
Sandwich T. 247M 13.9k S.W. 2.5k 17.96
Compressive T. 329M - N.o. - 17.1
Routing T. - - N.o - 15.8
kNN-LM∗∗ 247M 13.9k S.W. 145 15.79

PIA + Caching 247M 21.5k N.o. 14.5k 18.55
Staged Training 247M 17.6k S.W. 2.5k 17.56
Shortformer 247M 22.9k N.o. 14.5k 18.15

Table 5: Comparison of our best models to other strong
LMs (see text for citations and explanations) evaluating
the WikiText-103 test set, where S = 512. We mea-
sure speed in tok./sec. per GPU, and use a batch size of
1 for inference. ∗TransformerXL runs on an older ver-
sion of PyTorch, which might affect speed. ∗∗kNN-LM
requires a 400GB datastore.

best model from §5.3, it is nine times faster than
the baseline for token-by-token generation.

Since it uses a cache, sliding window evaluation
does not increase Shortformer’s performance. By
training the baseline with staged training (and no
PIA or caching), we obtain a model (our best model
from §4.2) that, with sliding window eval., obtains
even better results, but that model is much slower
than Shortformer (Table 5, second-to-last row).

Shortformer outperforms the baseline’s perplex-
ity and performs within a standard deviation of
the Sandwich Transformer (Press et al., 2020)
and TransformerXL. It does not outperform the
Compressive Transformer (Rae et al., 2020), Rout-
ing Transformer (Roy et al., 2020) and kNN-
LM (Khandelwal et al., 2020), which make or-
thogonal improvements that can be applied to any
language model, at the price of slower decoding.
Combining them with our approach may yield fur-
ther gains. These results are similar to those we
obtain on the Toronto Book Corpus (§A.5 in the
appendix).

7 Related Work

Staged Training Devlin et al. (2019) used a
staged training routine for BERT by performing
the first 90% of training on short subsequences (of
length 128) before moving on to longer ones (of
length 512). They use this method to speed train-
ing, but we show that also it improves perplexity
and analyze different configurations of this method.

Many recent papers have explored improving

transformer efficiency by reducing the quadratic
cost of self-attention, motivated by scaling to
longer sequences (Kitaev et al., 2020; Roy et al.,
2020; Tay et al., 2020). We instead demonstrate
improved results with shorter sequences, which
naturally also improve efficiency.

One way to reduce transformer memory usage is
to sparsify the attention matrix by letting the model
attend only to a subset of nearby tokens at each
timestep (Child et al., 2019; Beltagy et al., 2020;
Roy et al., 2020). Training on shorter subsequence
lengths is much more efficient: we use multiple, but
much smaller, attention matrices. Since attention
uses memory and computation in a way that scales
quadratically with input size, splitting the inputs
into multiple subsequences each processed indepen-
dently lets us use less memory and run faster. Like
our method, Beltagy et al. (2020) attend at each
timestep to a growing number of neighbors as train-
ing progresses, but they use five stages, which we
found not to be superior to our two-staged method.

The adaptive attention span model of Sukhbaatar
et al. (2019) learns the maximum effective context
window sizes for each head at each layer indepen-
dently. Like in our method, context window sizes
are smaller at the start of training and lengthen
as training progresses. We show that a simple
approach of manually choosing two subsequence
lengths is highly effective. In addition, keeping sub-
sequence lengths equal across all heads and layers
lets us save memory and runtime.

Position-Infused Attention TransformerXL
(Dai et al., 2019) caches and attends to previous
representations using an attention sublayer that
uses relative positioning (Shaw et al., 2018). It
runs much slower than the unmodified attention
sublayer, requires extra parameters, and requires
internally modifying the self-attention sublayer,
while our PIA method (§5) does not.

In parallel with our work, Ke et al. (2020) com-
pute attention coefficients by summing two atten-
tion matrices, one based on position-position in-
teractions and the other on content-content inter-
actions. As in PIA, they do not add position em-
beddings at the bottom of the model. They present
results only for BERT, which uses much smaller
subsequences than our models.

8 Conclusion

Our results challenge the conventional wisdom that
longer subsequences are always better. By first



training on shorter subsequences and then progress-
ing to longer ones via staged training, we improve
perplexity and reduce training time. We addition-
ally propose position-infused attention, which en-
ables caching and efficiently attending to previous
outputs; we show that models using this method do
not require large input subsequences. We finally
show that these two methods can be combined to
produce a speedier and more accurate model.
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A Appendix

A.1 Additional Staged Training Results

Table 6 shows the time each staged training model
needs to match baseline performance, as a fraction
of the time it takes to train the baseline. The fastest
three configurations each match the baseline’s per-
formance in just 37% of the time it takes to train
the baseline. This result is very robust to hyperpa-
rameter changes, as all models trained with initial
subsequence length of between 64 and 512, that
switch to the second stage at epoch 50 to 150, man-
age to match the baseline’s performance in at most
59% of the time it takes to train it.

Initial Stage Subsequence Length
0 32 64 128 256 512 1024 1536
25 0.60 0.54 0.53 0.65 0.64 0.71
50 0.53 0.48 0.47 0.54 0.59 0.63 0.81
75 0.51 0.43 0.42 0.48 0.53 0.56 0.79

In
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al
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ag
e

E
po
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s

100 0.52 0.40 0.38 0.41 0.47 0.50 0.73
125 0.61 0.41 0.37 0.37 0.42 0.46 0.69
150 0.48 0.39 0.37 0.40 0.44 0.66
175 0.48 0.43 0.45 0.51 0.70
200 0.59

Table 6: Time needed to match baseline performance
(dev. set, nonoverlapping eval.) as a fraction of time
needed to train the baseline (smaller is better). Mod-
els never matching the baseline have empty cells. All
models have a subsequence length of 3,072 tokens at
the end of training.

Initial Stage Subsequence Length
32 64 128 256 512 1024 1536

25 136 123 122 146 144 155
50 135 124 122 136 144 149 179
75 143 128 125 136 144 145 181

In
iti

al
St

ag
e

E
po

ch
s

100 158 135 130 136 145 142 175
125 190 149 141 140 146 144 174
150 176 160 154 153 151 174
175 191 178 177 176 189
200 202

Table 7: Epoch at which each model matches the base-
line. Some models never match the baseline, and so
those cells are empty.

Tables 7 and 8 show the epoch at which each
model matched the baseline’s performance and the
total time it took to train each of our staged training
models.

Initial Stage Subsequence Length
32 64 128 256 512 1024 1536

25 0.94 0.94 0.94 0.94 0.94 0.95 0.97
50 0.87 0.87 0.87 0.87 0.88 0.90 0.94
75 0.81 0.81 0.81 0.81 0.82 0.85 0.90

In
iti

al
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ag
e

E
po

ch
s

100 0.75 0.75 0.74 0.75 0.77 0.80 0.87
125 0.68 0.68 0.68 0.69 0.71 0.75 0.84
150 0.62 0.62 0.61 0.62 0.65 0.70 0.81
175 0.56 0.56 0.55 0.56 0.59 0.66 0.78
200 0.49 0.49 0.48 0.50 0.53 0.61 0.75

Table 8: Total time needed to train each model as a
fraction of the time needed for baseline training.

A.2 Staged Training with Shorter Final Stage
L

In section 4, all models presented used Staged
Training with a final input subsequence length L
of 3,072 tokens. In Table 9, we show the results
of training with a first stage with L = 128 for 50
epochs, and using varying subsequence lengths for
the second stage. The best result is obtained when
the second stage uses L = 3,072. In addition, in
all of our other experiments (not presented here)
with different L and epoch number values for the
first stage, we observed that using L = 3,072 for
the second stage always achieved the best perplexi-
ties. Models trained with staged training and eval-
uated with a sliding window sometimes perform
slightly worse when S is decreased, but this differ-
ence is much smaller than the standard deviation.
The L = 1536 and L = 3072 models peaked at
S = 512, and then as S was decreased perplexity
started slightly degrading.13

A.3 Training Speed vs. Performance

Figure 3 compares the validation performance and
training speed of the baseline to our models.

A.4 Memory Usage

To understand how much memory our models and
the baseline use during training, we find the largest
batch size that we can load into memory for both
our models and the baseline. Models that can simul-
taneously make more predictions are more memory
efficient.

13We conjecture that this is because of a train-test mismatch
that occurs since the average effective context length during
training is 3,072

2
= 1,536 and so the model focuses on learning

how to make predictions for the tokens in the center of the
input, and does not perform as well when making predictions
for tokens at the end of the input (which is what we use when
using sliding window evaluation).



Final
Subseq.
Length

Inference PPL ↓

Nonoverlapping Sliding Window
S = 512 S = 1

256 21.26 - 18.72
512 19.69 19.69 18.04
1024 18.64 17.60 17.58
1536 18.10 17.28 17.30
3072 17.52 16.89 17.01

Table 9: Inference perplexity for staged training mod-
els trained with an initial stage subsequence length of
128 for 50 epochs and varying second stage subse-
quence length L (for the second stage’s 155 epochs).
S is stride. To see how these models perform without
staged training, refer to Table 1.

Training

Max Max
Model Batch Size ↑ Predictions ↑

Baseline 2 6,144

Staged Training
Stage 1 230 29,440

Stage 2 2 6,144

PIA + Caching 26 13,312

Shortformer
Stage 1 160 20,480

Stage 2 26 13,312

Table 10: Memory usage of the baseline and our mod-
els during WikiText-103 training. For each model we
show the maximal batch size that it could fit on one
GPU at once during training. The max predictions col-
umn denotes the number of tokens predicted at each
feedforward pass, which we calculate by multiplying
batch size by number of predictions per subsequence
(which is equivalent to L). We benchmarked all mod-
els on a V100 GPU, with 32GB of memory. Note that
the second stage in the staged training model matches
the performance of the baseline model, because those
architectures are identical. The same is true for the sec-
ond stage of the Shortformer and the PIA + Caching
model.
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Figure 3: Dev. perplexity vs. training speed for the
baseline and our best staged training model, our best
PIA and caching model, and our best combined model
(Shortformer). All models are evaluated using nonover-
lapping evaluation.

Table 10 shows the memory usage for the base-
line model and our models. Since our Shortformer
model has much smaller attention matrices, during
training it can make more than double the next-
token predictions than the baseline can in each
feedforward pass. During inference, we use a batch
size of 1 throughout the paper, following (Dai et al.,
2019), and in our experiments, the PIA + Caching
model, the final staged training model and the base-
line all use a similar amount of memory during
nonoverlapping evaluation. During token-by-token
inference, the maximum number of predictions for
the baseline model is 7, whereas our model can fit
a batch size of 39 (so 39 predictions are made dur-
ing token-by-token inference), making our model
more than 5 times more memory efficient than the
baseline. Using a batch size of one is a realistic
benchmarking scenario: in large models such as
GPT-3, a batch size of one is used during inference.

A.5 Toronto Book Corpus

To verify that our results transfer to other datasets,
we ran our models on the Toronto Book Cor-
pus (TBC) (Zhu et al., 2015), a 700M token
collection of books that has previously been
used in the training corpus of BERT (along
with English Wikipedia). We use the same
train/development/test split as (Khandelwal et al.,
2020) and (Press et al., 2020), as well as their tok-
enization, which uses BERT’s vocabulary of 29K
BPE subwords. As in (Khandelwal et al., 2020)
and (Press et al., 2020), since the vocabulary is
much smaller than WikiText-103’s, we use a tied
word embedding and softmax matrix (Press and
Wolf, 2017; Inan et al., 2017), instead of using



the adaptive word embeddings (Baevski and Auli,
2018) as in the WikiText-103 models.

To fairly compare our models to the ones
from (Khandelwal et al., 2020) and (Press et al.,
2020), our initial set of experiments on the TBC
use a maximum subsequence length of 1,024 (for
staged training), train for 59 epochs, and for all
other hyperparameters we use the same values as
the ones we used for WikiText-103 (see Experi-
ment Setup in Section 2). In this setting, the base-
line achieves a perplexity of 15.38± 0.39 (standard
deviation) on the development set.

We do not tune the hyperparameters of our meth-
ods on the TBC, we simply use the same values as
the best ones that we found on the WikiText-103
dataset. For staged training, our best model trained
for 50

205% of the epochs with L = 128 and spent
the rest of training with the same subsequence size
as the baseline. For the TBC, we again trained
the staged training model model with L = 128
for the first 50

205% of training, and then move on
to L = 1,024, to match the Sandwich Trans-
former (Press et al., 2020) and kNN-LM (Khan-
delwal et al., 2020) which used 1,024 as the subse-
quence length.

For the PIA + Caching model, we set L = 512,
as we did for our best PIA + Caching on the
WikiText-103 dataset.

For the Toronto Book Corpus Shortformer, we
trained for the first half of training with L = 128
before moving on to training with L = 512, as in
our WikiText-103 models (Section 6).

Train Inference

PPL ↓
Model Speed↑ Mode Speed↑ Dev. Test

Baseline 24.0k N.o. 19.2k 15.38 12.73
S.W. 9.6k 14.75 11.89

kNN-LM∗ 24.0k S.W. - 14.20 10.89
Sandwich T. 24.0k S.W. 9.6k - 10.83

PIA + Caching 20.5k N.o. 15.0k 13.86 11.20

Staged Training 25.5k N.o. 19.2k 13.81 11.18
S.W. 9.6k 13.13 10.72

Shortformer 21.3k N.o. 15.5k 13.40 10.88

Table 11: Comparison of our best models to other
strong LMs trained on the Toronto Book Corpus (TBC).
Following Khandelwal et al. (2020) and Press et al.
(2020), for the baseline and our staged training model,
we set L = 1,024 and S = 512 when using sliding win-
dow (S.W.) evaluation in the TBC dataset. All models
have 261M parameters. ∗kNN-LM requires a 400GB
datastore.

Table 11 shows that staged training and the Short-
former improve over the baseline by a wide margin
and match the results of the Sandwich Transformer
and the kNN-LM. As noted in Section 6, those con-
tributions are orthogonal to ours, and combining
them might yield further gains. Since in Table 11
the final stage of the staged training model (and the
baseline) both have L = 1,024, Shortformer lacks
a speed advantage in this scenario.

Table 12 shows results for our staged training
model trained with a final stage subsequence length
of 3,072 tokens, as in our WikiText-103 experi-
ments in Section 4. This model trains faster than
the L = 3,072 baseline and also achieves much
better perplexity scores (the baseline in this setting
achieves a perplexity of 14.52 ± 0.15 (standard
deviation) on the development set). In addition,
note that the Shortformer model from Table 11
achieves better perplexity than even the baseline
with L = 3,072, although Shortformer is much
faster to train and uses much smaller attention ma-
trices during inference (of size 512 ·1024; the base-
line has attention matrices of size 3,072 · 3,072, as
in Section 6).

Train Inference

PPL ↓
Model Speed↑ Mode Speed↑ Dev. Test

Baseline 14.2 N.o. 15.1 14.52 11.69
(L = 3,072) S.W. 2.5k 14.14 11.43

Staged Training 18.1 N.o. 15.1 13.19 10.76
(L = 3,072) S.W. 2.5k 12.80 10.48

Table 12: Comparison of the staged training model to
the baseline, when the subsequence length L is set to
3,072. In this table, S = 512.


