

A198345


Decimal expansion of least x having 3*x^24x=cos(x).


3



3, 1, 0, 2, 5, 9, 1, 9, 1, 9, 1, 8, 5, 1, 0, 9, 6, 0, 7, 8, 1, 5, 9, 5, 5, 5, 9, 0, 4, 4, 2, 4, 2, 4, 4, 3, 9, 0, 2, 4, 3, 5, 6, 2, 4, 7, 4, 9, 9, 6, 9, 6, 4, 9, 6, 7, 1, 4, 2, 4, 6, 2, 1, 0, 0, 0, 7, 7, 5, 1, 5, 3, 2, 2, 5, 9, 1, 1, 4, 0, 6, 9, 7, 0, 4, 5, 7, 2, 9, 4, 8, 7, 1, 6, 7, 8, 4, 4, 7, 6, 7, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

See A197737 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

Table of n, a(n) for n=0..101.


EXAMPLE

least x: 0.310259191918510960781595559044242...
greatest x: 1.2488922646362152688168422541979...


MATHEMATICA

a = 3; b = 4; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, 1, 2}]
r1 = x /. FindRoot[f[x] == g[x], {x, .4, .3}, WorkingPrecision > 110]
RealDigits[r1] (* A198345 *)
r2 = x /. FindRoot[f[x] == g[x], {x, 1.24, 1.25}, WorkingPrecision > 110]
RealDigits[r2] (* A198346 *)


CROSSREFS

Cf. A197737.
Sequence in context: A307765 A308077 A336344 * A104416 A194582 A324173
Adjacent sequences: A198342 A198343 A198344 * A198346 A198347 A198348


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 23 2011


STATUS

approved



